A novel vegetated three-layer landfill cover system using recycled construction wastes without geomembrane

Author:

Ng Charles W.W.1,Chen R.2,Coo J.L.1,Liu J.2,Ni J.J.1,Chen Y.M.3,Zhan L.-t.3,Guo H.W.1,Lu B.W.1

Affiliation:

1. Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.

2. Department of Civil and Environmental Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China.

3. Department of Civil Engineering, MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, China.

Abstract

To promote environmental protection and sustainability, the use of plants and recycled wastes in geotechnical construction such as landfill covers is recommended. A landfill cover field test was conducted at the Shenzhen Xiaping landfill site, located in a humid climatic region of China. The main objective was to validate the field performance of a novel vegetated three-layer landfill cover system using recycled construction waste without the need of geomembrane. Unsieved completely decomposed granite and coarsely crushed concrete was used for the top and intermediate layers while sieved completely decomposed granite was used as the lowest layer. One section was transplanted with Bermuda grass while the other section was left bare. To assess the landfill cover performance, pore-water pressure, volumetric water content, percolation, and atmospheric parameters were measured for a period of 13 months under natural climatic conditions. The cumulative rainfall depth was about 2950 mm over the entire monitoring period. During rainfall, the presence of grass led to lower pore-water pressure (or higher suction) and volumetric water content in the three-layer landfill cover system. At the end of monitoring, the cumulative percolation was about 27 and 20 mm for the bare and grass-covered landfill covers, respectively. It is evident that the vegetated three-layer landfill cover system using recycled concrete without geomembrane can be effective in minimizing percolation in humid climates.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3