Use of biochar for alleviating negative impact of salinity stress in corn grown in arid soil

Author:

Alotaibi Khaled D.12

Affiliation:

1. Department of Soil Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

2. Department of Soil Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.

Abstract

Tremendous benefits of biochar (BC) amendment to soil have been reported, including their role in alleviating the impact of salinity stress in plants. The aim of this study was to evaluate the effects of BC produced at 300 °C (BC300) and 700 °C (BC700) on the germination rate (GR) and selected growth characteristics of corn plants irrigated with salinized water over a growth period of 6 weeks. The experimental treatments included three biochar treatments: BC0 (control, without biochar addition), BC300, and BC700. The treatments also included three salinity levels of irrigation water: 0, 3, and 6 dS·m−1. The biochar was applied at a rate of 3%. The GR decreased with increasing salinity level, which was more evident in the first week. This stress impact was reduced when treated with the BC700 relative to the saline treatments without BC. Both BC treatments demonstrated contrasting effects on corn growth, nutrient uptake, and Na+ and K+ content in plant tissue. The effect of BC700 treatment on plant height and root length was limited, but the impact of salinity stress on chlorophyll meter readings, chlorophyll fluorescence parameter (Fv/Fm), dry matter yield, and N and P uptake were largely mitigated. It also increased K+ and decreased Na+ content in plant tissue. However, the BC300 treatment adversely affected plant growth parameters at each salinity level. Overall, the BC produced at a higher temperature significantly alleviated the impact of salinity stress on plant growth characteristics, which is probably attributed to their higher surface area and porosity, enhancing their salt ion sorption capacity.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3