Optimizing Biochar Application Rates to Improve Soil Properties and Crop Growth in Saline–Alkali Soil

Author:

Chen Xin1,Liu Li1,Yang Qinyan1,Xu Huanan1,Shen Guoqing123ORCID,Chen Qincheng1

Affiliation:

1. School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China

2. Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, The Ministry of Science and Technology, The Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China

3. Shanghai Urban Forest Ecosystem Research Station, The National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China

Abstract

There is great demand for the amelioration of saline–alkali soils, which requires efficient and economical amendments. Biochar addition could alleviate the adverse impacts of saline–alkali stress in crops. However, their efficiency and optimal amounts in saline–alkali soil restoration remain contradictory and inconclusive. The objective of this study was to investigate the effects of biochar application on the properties of saline–alkali soil and crop growth, as well as to determine the optimal application rate of biochar. We conducted pot experiments with biochar (B) application rates, including 0 (CK), 1% (B-1%), 2.5% (B-2.5%), 5% (B-5%), and 10% (B-10%), studying the impact of biochar on soil water content (SWC), soil salinity, soil electrical conductivity (EC), soil ion content, soil nutrients, soil enzyme activity, and crop growth. A four-parameter Gaussian function was established for the curves depicting the relationship between soil salinity characteristics and the biochar application rates to determine the most optimal application rate. The results indicated that: (1) Compared to the CK, all biochar treatments improved soil water-holding capacity and reduced soil Na+ content and sodium adsorption ratio (SAR). (2) B-1%, B-2.5%, and B-5% treatments reduced soil content, EC, Cl−, and SO42− content over CK, while the results were reversed for the B-10% treatment. (3) Compared to the CK, all biochar treatments significantly increased soil fertility, enhanced soil enzyme activity (alkaline phosphatase, catalase, and urease activity), and significantly promoted the growth of maize. (4) The results of the Gaussian model suggested that a biochar application rate of 3.16% is the optimal rate for alleviating soil salinity in saline–alkali soils. This research demonstrated the potential of biochar to improve soil properties and promote crop growth and provided useful information on biochar application rates for ameliorating saline–alkali soils.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Reference83 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3