Predictive soil mapping in the Boreal Plains of Northern Alberta by using multi-temporal remote sensing data and terrain derivatives

Author:

Sorenson Preston T.12ORCID,Kiss Jeremy1ORCID,Serdetchnaia Anna2,Iqbal Javed3,Bedard-Haughn Angela K.1

Affiliation:

1. Department of Soil Science, University of Saskatchewan, Saskatoon, SK, Canada

2. Independent Consultant, Toronto, ON, Canada

3. Alberta Agriculture and Forestry, Government of Alberta, Edmonton, AB, Canada

Abstract

As Canada's vast Boreal Plains are extensively managed, predictive soil mapping could be used as an effective tool to generate high-resolution soil information for the region to inform sustainable resource management. This study aimed to investigate the use of multi-temporal remote sensing data and terrain derivatives to map soil types in the region. A method of constraining subgroup and great-group soil-type predictions based on the predictions at higher-order levels (great-group and order, respectively) was tested. Sentinel time series median values obtained by using Google Earth Engine were tested in combination with first- and second-order digital elevation model derivatives for use as predictor variables in the predictive models. A recursive feature selection process was implemented to reduce the number of predictor variables used in model training. Soil classes were predicted at the order, great-group, and subgroup levels and two approaches were tested. In the first approach, models were unconstrained based on previous predictions. In the second approach, models were constrained to predict only soil great-group classes that occur within the predicted soil order for a given location and similarly predict only soil subgroup classes that occur within the predicted soil great group for a given location. Determined through independent validation testing, the most probable predicted soil maps had overall accuracies ranging from 42% to 68% and kappa scores ranging from 0.33 to 0.48. Overall, the constrained models had the best performance of the approaches tested.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3