Evaluation of two miniaturized FT‐NIR spectrometers for rapid soil property analysis

Author:

Sorenson Preston T.1ORCID,Bulmer David1ORCID,Peak Derek1ORCID

Affiliation:

1. Department of Soil Science, College of Agriculture and Bioresources University of Saskatchewan Saskatoon Saskatchewan Canada

Abstract

AbstractUtilizing reflectance spectroscopy to generate the necessary soil data to drive innovations in precision agriculture and soil management is an increasing focus of agronomic research. One of the key limitations for widespread practical adoption of reflectance spectroscopy is hardware cost, and lower cost hardware is actively being developed. This study evaluated two inexpensive nano Fourier‐transform near infrared spectrometers in the laboratory. One was a laboratory‐based analyzer (LabFlow) and the second was a field portable analyzer (Field Probe). Soil spectra were collected in the shortwave infrared range and processed using wavelet transforms and machine learning models. The optimal wavelet transforms and machine learning model were selected using cross validation on the training dataset, and performance of the optimal model was evaluated using an independent testing dataset. The Field Probe configuration total nitrogen model had the best performance when compared to the LabFlow laboratory analyzer with an R2 of 0.91, a concordance correlation coefficient of 0.95, and an root mean square error of 0.03. Soil inorganic carbon did not perform as well with an R2 of 0.65. However, performance was likely limited by a large number of low values and a limited range in the training dataset. Overall, these results highlight the potential for lower cost spectrometers to provide useful soil data for soil management applications.

Publisher

Wiley

Subject

Soil Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3