Colonization of maize silks by Fusarium graminearum, the causative organism of gibberella ear rot

Author:

Miller S. Shea1,Reid Lana M.1,Harris Linda J.1

Affiliation:

1. Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Central Experimental Farm, Ottawa, ON K1A 0C6, Canada.

Abstract

One of the most economically important diseases of maize in Canada is gibberella ear rot caused by Fusarium graminearum Schwabe (teleomorph = Gibberella zeae (Schw.) Petch). Understanding how the fungus becomes established will help in developing effective strategies to reduce the incidence of this disease. This study investigates the infection process of F. graminearum on maize silks using both a wild-type F. graminearum as well as a strain transformed with a gene from jellyfish to constitutively express green fluorescent protein. Immature ears of maize were inoculated in the field with wild-type F. graminearum and harvested at specific times post infection, and the silks were stained with Chlorazol Black E for examination. In addition, uninoculated ears were excised, placed on water agar in large Petri dishes, and the silks inoculated with a suspension of macroconidia of the transformed fungus. The progress of fungal growth was then monitored using microscopy. Germination of conidia was observed 4–6 h after inoculation. A variable period of random growth often followed, after which some of the hyphae would grow in more or less straight lines down the silk towards the cob (rachis), and ultimately infect the developing kernels. Access to the cob occurred in 7–9 d in susceptible genotypes and 12–15 d in resistant genotypes. The fungus could penetrate the ovary directly through the silk attachment point or, when the silk was growing over other kernels, the fungus could traverse from the silk to colonize interkernel spaces. Entry into the cob was either through the rachis surface via exterior growth between kernels, or into the rachis via the pedicel.

Publisher

Canadian Science Publishing

Subject

Plant Science

Reference35 articles.

1. Biochemical Mechanisms of Disease Resistance

2. A new method for observing the morphology of vesicular–arbuscular mycorrhizae

3. Green Fluorescent Protein as a Reporter To Monitor Gene Expression and Food Colonization by Aspergillus flavus

4. Haseloff, J., Dormand, E.L., and Brand, A.H. 1998. Live imaging with green fluorescent protein. In Methods in molecular biology, Vol. 122: Confocal microscopy methods and protocols. Edited by S. Paddock. Humana Press, Totowa, USA. pp. 241–259.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3