Allozyme variation in interior Douglas-fir: association with growth and resistance to western spruce budworm herbivory

Author:

Chen Zhong,Kolb Thomas E,Clancy Karen M,Hipkins Valerie D,DeWald Laura E

Abstract

We used starch gel electrophoresis to investigate levels of genetic variation between trees of interior Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca) that were phenotypically resistant versus susceptible to defoliation by the western spruce budworm (Choristoneura occidentalis Freeman). We also investigated the association between allozyme variation and tree growth traits. Overall, the phenotypically resistant trees had a lower allelic heterozygosity (p = 0.020) compared with susceptible trees. However, this difference between resistant and susceptible trees primarily occurred at the Buena Vista, Colorado, site rather than the Deckers, Colorado, and Jacob Lake, Arizona, sites. Among 25 loci we examined, the resistant trees also had a higher frequency of the most common alleles (p = 0.057) and a higher proportion of homozygous genotypes, especially at loci FEST-1 (p = 0.004), ACO-1 (p = 0.080), and 6PGD-1 (p = 0.084). The higher allelic heterozygosity in susceptible trees was mainly due to their higher proportion of uncommon and (or) rare alleles. Compared with susceptible trees, resistant trees had higher mean radial growth rates (p = 0.047) and less temporal variability in growth rate over 25 years (p = 0.037). Mean radial growth rate and average tree heterozygosity were not related at any site (p = 0.316). Relationships between temporal variability in growth rate and tree heterozygosity were inconsistent among sites. Our results suggest that phenotypic differences in resistance of interior Douglas-fir to western spruce budworm defoliation are partly caused by genetic differences among trees.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3