Foliar nutrients and induced susceptibility: genetic mechanisms of Douglas-fir resistance to western spruce budworm defoliation

Author:

Clancy Karen M,Chen Zhong,Kolb Thomas E

Abstract

We conducted greenhouse defoliation experiments with clones of interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) over 3 years to assess the role of foliar nutrients as a resistance mechanism to western spruce budworm (Choristoneura occidentalis Freeman) defoliation. The grafted clones were derived from mature trees (i.e., ortets) that showed resistance or susceptibility to budworm defoliation in the forest. Current-year foliage was analyzed for concentrations of nitrogen (N), sugars (sucrose + fructose + glucose), phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), manganese (Mn), copper (Cu), iron (Fe), and zinc (Zn). We computed rank correlations between foliar nutrient levels in the ortets and their corresponding clones to test the null hypothesis that foliar chemistry does not have a genetic basis (H01). Foliar concentrations of sugars and P were under genetic control to some degree, but concentrations of other nutrients were not. We used analysis of variance to test the null hypotheses that foliar chemistry does not change in response to budworm defoliation (H02) and that it is not different between resistant and susceptible clones (H03). We rejected H02 for sugars, P, K, Mn, and Zn; defoliation by the budworm changed levels of these nutrients and had divergent effects on concentrations of P, K, and Zn in resistant clones. We concluded that induced susceptibility, whereby defoliation alters foliar nutrients to make trees more favorable for insect feeding, appears to be an important determinant of Douglas-fir resistance to the western spruce budworm. Failure to reject H03 implies that previously reported differences between the foliar nutrient levels in resistant Douglas-firs and those in susceptible Douglas-firs in the forest are probably caused by induced susceptibility.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3