Detection of QTL underlying seed quality components in soybean [Glycine max (L.) Merr.]

Author:

Akond Masum1,Yuan Jiazheng1,Liu Shiming2,Kantartzi Stella K.2,Meksem Khalid2,Bellaloui Nacer3,Lightfoot David A.2,Kassem My Abdelmajid1

Affiliation:

1. Plant Genomics and Biotechnology Lab, Department of Biological Sciences, Fayetteville State University, Fayetteville, NC 28301, USA.

2. Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA.

3. Crop Genetics Research Unit, United States Department of Agriculture — Agricultural Research Service, 141 Experiment Station Road, P.O. Box 345, Stoneville, MS 38776, USA.

Abstract

Improving seed composition and quality, including protein, oil, fatty acid, and amino acid contents, is an important goal of soybean farmers and breeders. The aim of this study was to map the quantitative trait loci (QTL) underlying the contents of protein, oil, fatty acids, and amino acids with 1510 single nucleotide polymorphism (SNP) markers using the ‘Hamilton’ × ‘Spencer’ recombinant inbred line population (H × S; n = 93). A total of 13 QTL for the traits studied have been mapped on 3 chromosomes (Chr.) of the soybean genome. Three major QTL have been mapped to a 7–13 cM region on Chr. 6. One major QTL for oil content (qOIL001) explained approximately 76% of the total phenotypic variation in this population; the second major QTL for amino acid alanine (Ala; qALA001) explained approximately 74% of the total variation in Ala content; moreover, two major QTL for palmitic acid (qPAL001 and qPAL002) were identified on Chr. 6 and explained approximately 21% of the phenotypic variation in this population. The SNP markers flanking the QTL identified here will be very useful for soybean breeders to develop and select soybean lines with higher seed composition qualities using marker-assisted selection.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3