Spatial variability in Ontario Riesling vineyards. II. Berry composition

Author:

Willwerth James J.12,Reynolds Andrew G.12

Affiliation:

1. Cool Climate Oenology and Viticulture Institute (CCOVI), Brock University, St. Catharines, ON L2S 3A1, Canada

2. Cool Climate Oenology and Viticulture Institute (CCOVI), Brock University, St. Catharines, ON L2S 3A1, Canada.

Abstract

Spatial variability of berry composition was studied over a 3-yr period in 10 Riesling vineyards in the Niagara Peninsula in Ontario. Vineyards were delineated using global positioning systems (GPS), and 75–80 sentinel vines were georeferenced within a sampling grid for data collection. During 2005–2007, vine water status measurements [leaf water potential (ψ)] were collected biweekly from a subset of these sentinel vines. Data were collected on soil texture and composition, soil water content (SWC; %), leaf ψ, and fruit composition. These variables were mapped using GIS software, and relationships between them were elucidated. Temporal stability in spatial patterns of soil texture and composition, SWC, leaf ψ, soluble solids (Brix), titratable acidity, and monoterpenes were examined. Spatial trends in leaf ψ and (or) SWC showed widespread evidence of temporal stability. Fruit composition variables were not as stable over a 3-yr period. Spatial trends in Brix were temporally stable in seven vineyards, free volatile terpenes were temporally stable in three vineyards, and potentially volatile terpenes were temporally stable in two vineyards. Consistent leaf ψ zones were identified, and these were temporally stable despite different climatic conditions. Furthermore, some soil variables, and particularly vine water status, may contribute significantly to the terroir effect through their effects on vine size and fruit composition. For some vineyards, many viticulture and fruit composition variables were also temporally stable. There was evidence of strong spatial relationships between leaf ψ and fruit composition, suggesting a strong relationship between berry composition and vine water status.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3