Unsupervised algorithms to detect single trees in a mixed-species and multilayered Mediterranean forest using LiDAR data

Author:

Alvites Cesar1,Santopuoli Giovanni23,Maesano Mauro4,Chirici Gherardo5,Moresi Federico Valerio4,Tognetti Roberto23,Marchetti Marco13,Lasserre Bruno1

Affiliation:

1. Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Cda Fonte Lappone snc, Pesche (IS) 86090, Italy.

2. Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Via De Sanctis snc, Campobasso 86100, Italy.

3. Centro di Ricerca per le Aree Interne e gli Appennini (ArIA), Università degli Studi del Molise, Via De Sanctis snc, Campobasso 86100, Italy.

4. Department of Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo 01100, Italy.

5. Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università degli Studi di Firenze, Via San Bonaventura 13, Firenze 50145, Italy.

Abstract

Accurate measurement of forest growing stock is a prerequisite for implementing climate-smart forestry strategies. This study deals with the use of airborne laser scanning data to assess carbon stock at the tree level. It aims to demonstrate that the combined use of two unsupervised techniques will improve the accuracy of estimation supporting sustainable forest management. Based on the heterogeneity of tree height and point cloud density, we classified 31 forest stands into four complexity categories. The point cloud of each stand was further divided into three horizontal layers, improving the accuracy of tree detection at tree level for which we calculated volume and carbon stock. The average accuracy of tree detection was 0.48. The accuracy was higher for forest stands with lower tree density and higher frequency of large trees, as well as a dense point cloud (0.65). The prediction of carbon stock was higher with a bias ranging from –0.3% to 1.5% and a root mean square error ranging from 0.14% to 1.48%.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3