Determining the environmental fate of a filamentous fungus,Trichoderma reesei, in laboratory-contained intact soil-core microcosms using competitive PCR and viability plating

Author:

Providenti Miguel A,Mautner Selma I,Chaudhry Omar,Bombardier Manon,Scroggins Richard,Gregorich Edward,Smith Myron L

Abstract

Trichoderma spp. are used extensively in industry and are routinely disposed of in landfill sites as spent biomass from fermentation plants. However, little is known regarding the environmental fate of this biomass. We tracked the survival of T. reesei strain QM6A#4 (a derivative of strain QM6A marked with a recombinant construct) over a 6-month period in laboratory-contained, intact soil-core microcosms incubated in a growth chamber. Survival was tested in 3 different soils and the effect of a plant rhizosphere (bush lima beans, Phaseolus limensis) was investigated. Levels and viability of the fungus were determined, respectively, by quantitative competitive polymerase chain reaction analysis of total soil DNA extracts and dilution-plating of soil on a semiselective growth medium. Whereas chemically killed QM6A#4 became undetectable within 3 d, QM6A#4 added as a live inoculum decreased ~4- to ~160-fold over the first 1–3 months and then reached a steady state. After 4 months, soil cores were subjected to a 1.5-month simulated winter period, which did not significantly affect QM6A#4 levels. Throughout the experiment, QM6A#4 remained viable. These results indicate that, following release into the environment, live T. reesei will persist in soil for at least 2 seasons.Key words: competitive PCR, genetically engineered microorganisms (GEMs), genetically modified organism (GMO), survival of microorganisms, microcosm, Trichoderma.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3