Validation of Microcosms for Examining the Survival of Pseudomonas aureofaciens (lacZY) in Soil

Author:

Angle J S,Levin M A,Gagliardi J V,McIntosh M S

Abstract

Evaluating the safety and efficacy of a recombinant bacterium prior to its release into the terrestrial environment requires that risk assessment data be collected in the laboratory. Much of this information is obtained with the use of microcosms. The design of the microcosm significantly affects the ability of the recombinant microorganism to survive in soil and, thus, complicates the risk assessment process. To standardize microcosms for future use, we evaluated the survival of Pseudomonas aureofaciens 3732 RN-L11 (lacZY Rif(supr) Nal(supr)) in intact soil cores (5.0 by 15 cm; polyvinyl chloride core) and disturbed soil microcosms (50 g of fresh, sieved soil). Survival data were compared with those obtained during a field release. The intact soil core microcosm was shown to closely simulate results obtained in the field. The intact soil core microcosm closely predicts survival in bulk soil and in the rhizosphere of wheat. Data obtained with the microcosm were also similar when evaluated in separate studies in two different years. In 1993, P. aureofaciens survived for approximately 63 days in bulk soil and 96 days in the rhizosphere. The disturbed soil microcosm exhibited a much more rapid decline in population size (34 days to zero) than the intact core microcosm. We speculate that drying and sieving of soil for the disturbed soil microcosm affected the ability of the soil to support the survival of P. aureofaciens. These results demonstrate that a small, inexpensive, and simple intact soil core microcosm may be appropriate for risk assessment.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference26 articles.

1. Angle J. S. et al. Unpublished data.

2. Pseudomonas aureofaciens in soil: survival and recovery efficiency;Angle J. S.;Microb. Releases,1994

3. Permanent insertion of foreign genes into the chromosomes of soil bacteria;Barry G. F.;Bio/Technology,1986

4. A broad-host-range shuttle system for gene insertion into the chromosome of gram-negative bacteria;Barry G. F.;Gene,1988

5. Intact soil-core microcosms for evaluating the fate and ecological impact of the release of genetically engineered microorganisms;Bentjen S. A.;Appl. Environ. Microbiol.,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3