Affiliation:
1. Health and Integrative Physiology Laboratory, School of Human Kinetics, The University of British Columbia, 6108 Thunderbird Blvd., Vancouver, BC V6T 1Z3.
Abstract
Studies examining pulmonary gas exchange during exercise have primarily focused on young healthy men, whereas the female response to exercise has received limited attention. Evidence is accumulating that the response of the lungs, airways, and (or) respiratory muscles to exercise is less than ideal and this may significantly compromise oxygen transport in certain groups of otherwise healthy, fit, active, male subjects. Women may be even more susceptible to exercise-induced pulmonary limitations than height-matched men, by virtue of their smaller lung volumes, lower maximal expiratory flow rates, and smaller diffusion surface areas. We have recently shown that exercise-induced arterial hypoxaemia (EIAH) is more prevalent and occurs at relatively lower fitness levels in females than in males. Despite this finding, few physiologically based mechanisms have been identified to explain why women may be more susceptible to EIAH than men. Potential mechanisms of EIAH include relative alveolar hypoventilation, ventilation–perfusion inequality, and diffusion limitation. Whether these mechanisms are different between sexes remains controversial. The primary purpose of this review is to summarize the available data on EIAH in women and to discuss potential sex-based mechanisms for gas exchange impairment. Furthermore, we discuss unresolved questions dealing with pulmonary system limitations during exercise in women.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献