Regulation and drug resistance mechanisms of mammalian ribonucleotide reductase, and the significance to DNA synthesis

Author:

Wright Jim A.,Chan Arthur K.,Choy Bob K.,Hurta Robert A. R.,McClarty Grant A.,Tagger Aaron Y.

Abstract

Mammalian ribonucleotide reductase, which occupies a key position in the synthesis of DNA, is a highly controlled enzyme activity, because it is solely responsible-for the de novo reduction of ribonucleoside diphosphates to their corresponding deoxyribonucleoside diphosphate forms, required for DNA synthesis. Ribonucleotide reductase consists of two dissimilar protein components often called M1 and M2, which are independently regulated during cell proliferation. The M1 component contains multiple effector binding sites and is responsible for the complex allosteric regulation of the enzyme, whereas the M2 protein contains nonheme iron and a unique tyrosyl-free radical required for ribonucleotide reduction. Since the reaction is rate limiting for DNA synthesis, ribonucleotide reductase plays an important role in regulating cell division, and hence, cell proliferation. There are many inhibitors of ribonucleotide reductase and perhaps the most valuable one from a cell biology, biochemistry, and clinical point of view is the hydroxamic acid, hydroxyurea. This drug has also been very useful as a selective agent for isolating a variety of mammalian mutant cell lines altered in ribonucleotide reductase gene expression. Regulatory, structural, and biological characteristics of ribonucleotide reductase are reviewed, including evidence that ribonucleotide reductase, particularly the M2 protein, has an important early role to play in tumor promotion. In addition, modifications in the expressions of genes altered in hydroxyurea-resistant mutants and cultured in the absence or presence of hydroxyurea are discussed, with emphasis on changes in M2 protein, M1 protein, and the iron-storage protein ferritin. Several regulatory models are presented, including a model showing the relationships between M2 protein levels, deoxyribonucleotide pools, and DNA synthesis, and a model demonstrating a linkage between M2 and ferritin proteins in regulating DNA synthesis in normal and hydroxyurea-resistant mammalian cells.Key words: DNA synthesis, cell proliferation, ribonucleotide reductase, drug resistance.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3