Patch dynamics and the development of structural and spatial heterogeneity in Pacific Northwest forests

Author:

Kane Van R.1,Gersonde Rolf F.2,Lutz James A.1,McGaughey Robert J.3,Bakker Jonathan D.1,Franklin Jerry F.1

Affiliation:

1. School of Forest Resources, College of the Environment, University of Washington, Box 352100, Seattle, WA 98195, USA.

2. Watershed Services Division, Seattle Public Utilities, 19901 Cedar Falls Road SE, North Bend, WA 98045, USA.

3. Pacific Northwest Research Station, USDA Forest Service, University of Washington, Box 352100, Seattle, WA 98195, USA.

Abstract

Over time, chronic small-scale disturbances within forests should create distinct stand structures and spatial patterns. We tested this hypothesis by measuring the structure and spatial arrangement of gaps and canopy patches. We used airborne LiDAR data from 100 sites (cumulative 11.2 km2) in the Pacific Northwest, USA, across a 643 year chronosequence to measure canopy structure, patch and gap diversity, and scales of variance. We used airborne LiDAR’s ability to identify strata in canopy surface height to distinguish patch spatial structures as homogeneous canopy structure, matrix–patch structures, or patch mosaics. We identified six distinct stand structure classes that were associated with the canopy closure, competitive exclusion, maturation, and three patch mosaics stages of late seral forest development. Structural variance peaked in all classes at the tree-to-tree and tree-to-gap scales (10–15 m), but many sites maintained high variance at scales >30 m and up to 200 m, emphasizing the high patch-to-patch heterogeneity. The time required to develop complex patch and gap structures was highly variable and was likely linked to individual site circumstances. The high variance at larger scales appears to be an emergent property that is not a simple propagation of processes observed at smaller spatial scales.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3