Form, facies, and depositional history of the North Long John rock avalanche, Owens Valley, California

Author:

Blair Terence C

Abstract

The prehistoric but geomorphically pristine North Long John rock avalanche of the Inyo Mountains piedmont, California, formed by the catastrophic collapse and disintegration of a 500 × 1000 m range-front bedrock slab. This failure rapidly produced and transferred ~25 million cubic metres of new sediment to the piedmont, where it was deposited in a trough between two coalesced alluvial fans. The avalanche consists of nearly monolithologic (aplitic), unstratified, very angular, muddy, cobble, pebble gravel with boulders concentrated at the top and outer margins. The deposits are clast supported except in the lower central zone. Coarse clasts exhibit crackle-breccia fabric, and the voluminous equant pebbles are the disaggregated products of these clasts. The avalanche deposits are distributed in a U-shaped body with paired lateral levees 10-60 m high that extend 1560 m from the range front to a 108 m high distal snout. Each levee contains three segments that, along with the snout, overlap and extend progressively farther downslope from the inside of each other in a telescoped pattern. The most proximal deposits are the remnant sole sheared off where the avalanche intersected the piedmont, whereas the remainder was deposited as an ensuing grain flow. The radial alignment of the long axes of coarse clasts in the upper levees indicate that particle-particle interaction took place during flowage, and that clasts were pushed towards the margins. Part of the northern second levee borders a sharp and vertical, 10-18 m high scarp cleanly sliced through older fan deposits. This scarp was cut by the leading edge of the avalanche, which rapidly bulldozed away ~0.5 million cubic metres of fan deposits in the flow path. A southward cross-tilt resulted from the avalanche turning south due to interference with higher fan deposits on the north side. Friction from this interference restricted avalanche runout to 1.6 km, 25-33% of the distance predicted by empirical data from case studies lacking flow-path obstructions.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3