Framework for improving workflow stability: deployment of optimized capacity buffers in a synchronized construction production

Author:

Arashpour Mehrdad1,Wakefield Ron1,Blismas Nick1,Lee E.W.M.2

Affiliation:

1. RMIT University, School of Property, Construction and Project Management, 360 Swanston Street, Melbourne, VIC 3000, Australia.

2. City University of Hong Kong, Department of Civil and Architectural Engineering.

Abstract

Construction sites are dynamic environments due to the influence of variables such as changes in design and processes, unsteady demand, and unavailability of trades. These variables adversely affect productivity and can cause an unstable workflow in the network of trade contractors. Previous research on workflow stability in the construction and manufacturing domains has shown the effectiveness of ‘pull’ production or ‘rate driven’ construction. Pull systems authorize the start of construction when a job is completed and leaves the trade contractor network. However, the problem with pull systems is that completion dates are not explicitly considered and therefore additional mechanisms are required to ensure the due date integrity. On this basis, the aim of this investigation is to improve the coordination between output and demand using optimal-sized capacity buffers. Towards this aim, production data of two Australian construction companies were collected and analyzed. Capacity and cost optimizations were conducted to find the optimum buffer that strikes the balance between late completion costs and lost revenue opportunity. Following this, simulation experiments were designed and run to analyze different ‘what-if’ production scenarios. The findings show that capacity buffers enable builders to ensure a desired service level. Size of the capacity buffer is more sensitive to the level of variability in contractor processes than other production variables. This work contributes to the body-of-knowledge by improving production control in construction and deployment of capacity buffers to achieve a stable workflow. In addition, construction companies can use the easy-to-use framework tested in this study to compute the optimal size for capacity buffers that maximizes profit and prevents late completions.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3