myo-Inositol phosphate isomers generated by the action of a phytate-degrading enzyme from Klebsiella terrigena on phytate

Author:

Greiner Ralf,Carlsson Nils-Gunnar

Abstract

For the first time a dual pathway for dephosphorylation of myo-inositol hexakisphosphate by a histidine acid phytase was established. The phytate-degrading enzyme of Klebsiella terrigena degrades myo-inositol hexakisphosphate by stepwise dephosphorylation, preferably via D-Ins(1,2,4,5,6)P5, D-Ins(1,2,5,6)P4, D-Ins(1,2,6)P3, D-Ins(1,2)P2 and alternatively via D-Ins(1,2,4,5,6)P5, Ins(2,4,5,6)P4, D-Ins(2,4,5)P3, D-Ins(2,4)P2 to finally Ins(2)P. It was estimated that more than 98% of phytate hydrolysis occurs via D-Ins(1,2,4,5,6)P5. Therefore, the phytate-degrading enzyme from K. terrigena has to be considered a 3-phytase (EC 3.1.3.8). A second dual pathway of minor importance could be proposed that is in accordance with the results obtained by analysis of the dephosphorylation products formed by the action of the phytate-degrading enzyme of K. terrigena on myo-inositol hexakisphosphate. It proceeds preferably via D-Ins(1,2,3,5,6)P5, D-Ins(1,2,3,6)P4, Ins(1,2,3)P3, D-Ins(2,3)P2 and alternatively via D-Ins(1,2,3,5,6)P5, D-Ins(2,3,5,6)P4, D-Ins(2,3,5)P3, D-Ins(2,3)P2 to finally Ins(2)P. D-Ins(2,3,5,6)P4, D-Ins(2,3,5)P3, and D-Ins(2,4)P2 were reported for the first time as intermediates of enzymatic phytate dephosphorylation. A role of the phytate-degrading enzyme from K. terrigena in phytate breakdown could not be ruled out. Because of its cytoplasmatic localization and the suggestions for substrate recognition, D-Ins(1,3,4,5,6)P5 might be the natural substrate of this enzyme and, therefore, may play a role in microbial pathogenesis or cellular myo-inositol phosphate metabolism.Key words: myo-inositol phosphate isomers, phytate-degrading enzyme, phytate, phytase, Klebsiella terrigena.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bioprospecting of Fungi to Produce Protease and Amylase;Bioprospecting of Multi-tasking Fungi for a Sustainable Environment;2024

2. Insights to the Structural Basis for the Stereospecificity of the Escherichia coli Phytase, AppA;International Journal of Molecular Sciences;2022-06-06

3. Phytases: Biochemistry, Enzymology and Characteristics Relevant to Animal Feed Use;Enzymes in Farm Animal Nutrition;2022-03-11

4. Phytic acid accumulation in plants: Biosynthesis pathway regulation and role in human diet;Plant Physiology and Biochemistry;2021-07

5. PHYTASE FROM BACILLUS SP. STRAIN LA12: ISOLATION, PURIFICATION AND CHARACTERIZATION;Journal of Microbiology, Biotechnology and Food Sciences;2021-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3