Impact of a pine lappet (Dendrolimus pini) mass outbreak on C and N fluxes to the forest floor and soil microbial properties in a Scots pine forest in Germany

Author:

le Mellec Anne1,Michalzik Beate1

Affiliation:

1. Institute of Geography, University of Göttingen, Landscape Ecology Section, Goldschmidtstr. 5, D-37077 Goettingen, Germany.

Abstract

Herbivorous insect infestations significantly alter element and nutrient cycling in forests, thus directly and indirectly affecting ecosystem functioning. In this paper, we report on the herbivore-mediated transfer of carbon (C) and nitrogen (N) from the canopy to the forest floor and its influence on soil microbial activity during a pine lappet ( Dendrolimus pini L.) infestation. Over the course of 6 months, we followed C and N fluxes in bulk deposition, throughfall, and green fall (green needle debris dropped during herbivory) together with solid frass (insect faeces) in an 80-year-old Scots pine ( Pinus silvestris L.) forest. Compared with the control, herbivore defoliation significantly doubled throughfall inputs of total and dissolved organic C and N over the study period. Frass plus green-fall C and N fluxes peaked in June–July at 110 kg C·ha–1and 2.3 kg N·ha–1, respectively. Randomized intervention analysis revealed no significant effects of herbivory on soil microbial properties, except for adenylate energy charge, which showed slightly higher values under herbivory. This study demonstrates the importance of canopy herbivory on overall C and N inputs to forest ecosystems, particularly in altering the timing and quality of the organic material reaching the forest floor and potentially affecting belowground processes.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3