Decreased Soil Microbial Biomass and Changed Microbial Community Composition following a Defoliation Event by the Forest Tent Caterpillar

Author:

Dansereau-Macias Éléonore12,Despland Emma3ORCID,Handa Ira Tanya1

Affiliation:

1. Département des Sciences Biologiques, Université du Québec à Montréal, 141 President-Kennedy Ave., Montreal, QC H2X 1Y4, Canada

2. Institut des Sciences de la Mer, Université du Québec à Rimouski, 310 All. des Ursulines, Rimouski, QC G5L 2Z9, Canada

3. Biology Department, Concordia University, 7141 Sherbrooke West, Montreal, QC H4B 1R6, Canada

Abstract

With climate change projected to increase the frequency and severity of episodic insect outbreak events, assessing potential consequences for soil microbial communities and nutrient dynamics is of importance for understanding forest resilience. The forest tent caterpillar (Malacosoma disstria) is an important defoliator of deciduous tree species in temperate and mixed forests of eastern North America with an invasion cycle every 10–12 years and outbreak events that can last 3–6 years. Following a defoliation episode on trembling aspen (Populus tremuloides) from 2015 to 2017 in Abitibi-Témiscamingue, QC, Canada, we sought to test if defoliation resulted in changes to soil bacterial and fungal communities. We hypothesized an increase in soil microbial biomass due to increased caterpillar frass inputs and potential changes in community structure following the event. Soils were sampled in August 2018, May 2019 and July 2019 from sites that had been subjected to defoliation during the outbreak and from sites where no defoliation had been recorded. We assessed soil microbial biomass and fungal to total microbial activity ratio on all sampling dates, and Community Level Physiological Profiles (CLPPs) for 2018 only using a substrate-induced respiration method. Contrary to our hypothesis, we observed a significant 50% decrease in microbial biomass (μg biomass-C g−1 soil hour−1) in defoliated stands, suggesting tree carbon normally allocated towards root exudates was reallocated towards foliage regeneration. We noted a differentiated carbon-based substrate usage following defoliation, but no change in the fungal to total microbial activity ratio. The observed changes in the two years following the defoliation event suggest that defoliation episodes above-ground could trigger changes in soil chemistry below-ground with effects on soil microbial communities that may, in turn, feedback to influence forest plant dynamics.

Funder

Natural Sciences and Engineering Research Council

Quebec Center for Biodiversity Science

SERG international

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3