Quantification of contributions of different molecular fragments for antioxidant activity of coumarin derivatives based on QSAR analyses

Author:

Mitra Indrani1,Saha Achintya2,Roy Kunal1

Affiliation:

1. Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.

2. Department of Chemical Technology, University of Calcutta, 92 A P C Road, Kolkata 700009, India.

Abstract

Attempts have been made in the present work using in silico techniques for identification of essential structural features imparting antioxidant potential to naturally available coumarin molecules and their synthetic derivatives. Four different types of modeling tools have been employed for the qualitative and quantitative assessment of the molecular fragments constituting the biological pharmacophore. The descriptor-based quantitative structure–activity relationship (QSAR) and group-based QSAR (G-QSAR) models provide a quantitative estimation of the substituent requirements and the chemical nature of the parent moiety. Subsequently, 3D pharmacophore and hologram QSAR (HQSAR) models enable identification of the key molecular components necessary for the antioxidant potency to the molecules. All of the different models infer the importance of the hydrogen bond acceptor ketonic fragment for interaction of the antioxidant molecules with the neighbouring toxic radicals. Additionally, the phenyl substituent attached to the side chain and the benzene nucleus of the benzopyran moiety also constitute the response pharmacophore for the molecules under study. The models thus developed may serve as an essential query tool for screening of databases for selection of molecules bearing the essential fragments and subsequent prediction of their free radical scavenging potency.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Reference52 articles.

1. Gutteridge, J. M. C.; Halliwell, B. Antioxidants in Nutrition, Health and Disease; Oxford University Press: Oxford, UK, 1994.

2. Vascular effects of oxygen-derived free radicals

3. Reactive Oxygen Species and the Central Nervous System

4. Oxygen Free Radicals and Brain Dysfunction

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3