Design, synthesis and anti-oxidant activities of novel 1,2,3,4-tetrazine, 1,2,3-triazoles and coumarin derivatives and their nanoparticular encapsulation

Author:

Eyilcim OznurORCID,Belmen BurcuORCID,Coksu IremORCID,Acar SerapORCID,Yolacan CigdemORCID,Gunkara Omer TahirORCID

Abstract

Abstract Nitrogen-containing heterocyclic compounds are currently used for a number of pharmaceutical and agricultural applications because they have biological activities such as antimicrobial, antiviral, antituberculosis, anticancer, analgesic, antioxidant, anti-inflammatory and antidepressant. 1,2,3,4-Tetrazines and 1,2,3-triazoles are examples of high-nitrogen heterocyclic compounds. Coumarins, on the other hand, are lactones that form a group of oxygenated heterocyclic compounds found in plants. In this article, two analogs of 1,2,3,4-tetrazine, two analogs of 1,2,3-triazole and five analogs of coumarin were designed and synthesized. Their chemical structures were characterized by detecting their FTIR, 1H-NMR, and 13C-NMR (APT) spectra. The antioxidant activities of all synthesized molecules were compared at a fixed concentration (0.25 mg ml−1) using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method. Molecules 9c and 9e, which showed the highest antioxidant activity, were loaded into PLGA (poly(lactic-co-glycolic) acid) nanoparticles using the oil in water (o/w) single emulsion solvent evaporation method as a model study. Synthesized nanoparticles characterized for particle size, zeta potential, functional groups, morphology, and release properties. Particle size and zeta potential of 9c/NP were determined as 216.1 ± 8.944 nm and −14.1 ± 2.40 mV, respectively. The particle size and zeta potential for 9e/NP were measured as 222.0 ± 12.490 nm and −12.4 ± 1.42 mV respectively. The study results obtained on model nanoparticle systems with elucidated physicochemical properties may have the potential to provide a promising basis for oxidative stress-related diseases in the future.

Funder

Yildiz Technical University Scientific Research Projects Coordination Unit

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3