The seasonal dynamics of a High Arctic plant–visitor network: temporal observations and responses to delayed snow melt

Author:

Gillespie Mark A.K.12,Cooper Elisabeth J.1

Affiliation:

1. Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT — The Arctic University of Norway, 9037 Tromsø, Norway.

2. Department of Environmental Sciences, Western Norway University of Applied Sciences, Sogndal Campus, PB 133, 6851 Sogndal, Norway.

Abstract

Plant–visitor food webs provide important insights into species interactions, and more information about their seasonal dynamics is vital to understanding the resilience of species to external pressures. Studies of Arctic networks can also improve our understanding of species responses to the pressures of climate change. This study provides the first description of a plant – insect visitor network in Svalbard, a High Arctic archipelago already experiencing the consequences of climate change. A subset of the network was collected from experimental plots where the snow melt date was delayed with snow fences. The deep snow plots delayed flowering and we expected this to disrupt plant–visitor interactions compared with ambient snow conditions. However, the composition of flowers and insect visitors were similar between regimes, and the network tracked patterns of overall flowering phenology. Nevertheless, the deep snow significantly reduced the average overlap between flower availability and insect activity, reducing the probability of an interaction. We suggest that at a landscape scale, Arctic pollinators will benefit from patchy changes to snow melt that maintain heterogeneity in the timing of flowering but changes that increase homogeneity in snowmelt across the landscape may negatively impact some species.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Environmental Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3