A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones

Author:

Boulanger Yan1,Gauthier Sylvie1,Burton Philip J.2

Affiliation:

1. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Quebec, QC G1V 4C7, Canada.

2. University of Northern British Columbia, 4837 Keith Ave., Terrace, BC V8G 1K7, Canada.

Abstract

Broad-scale fire regime modelling is frequently based on large ecological and (or) administrative units. However, these units may not capture spatial heterogeneity in fire regimes and may thus lead to spatially inaccurate estimates of future fire activity. In this study, we defined homogeneous fire regime (HFR) zones for Canada based on annual area burned (AAB) and fire occurrence (FireOcc), and we used them to model future (2011–2040, 2041–2070, and 2071–2100) fire activity using multivariate adaptive regression splines (MARS). We identified a total of 16 HFR zones explaining 47.7% of the heterogeneity in AAB and FireOcc for the 1959–1999 period. MARS models based on HFR zones projected a 3.7-fold increase in AAB and a 3.0-fold increase in FireOcc by 2100 when compared with 1961–1990, with great interzone heterogeneity. The greatest increases would occur in zones located in central and northwestern Canada. Much of the increase in AAB would result from a sharp increase in fire activity during July and August. Ecozone- and HFR-based models projected relatively similar nationwide FireOcc and AAB. However, very high spatial discrepancies were noted between zonations over extensive areas. The proposed HFR zonation should help providing more spatially accurate estimates of future ecological patterns largely driven by fire in the boreal forest such as biodiversity patterns, energy flows, and carbon storage than those obtained from large-scale multipurpose classification units.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3