The aerobic electron transport system ofEikenella corrodens

Author:

Jaramillo Rubén D,Barraza Beatriz C,Polo Alma,Sará Martín,Contreras Martha,Escamilla J Edgardo

Abstract

The respiratory system of the fastidious β-proteobacterium Eikenella corrodens grown with limited oxygen was studied. Membranes showed the highest oxidase activity with ascorbate plus N,N,N',N'-tetramethyl-p-phenyl enediamine (TMPD) or succinate and the lowest activity with NADH and formate. The presence of a bc1-type complex was suggested by the inhibition exerted by 2-heptyl-4-hydroxyquinoline-N-oxide (HOQNO), myxothiazol, and antimycin A on respiration with succinate and by the effect of the latter two inhibitors on the succinate-reduced difference spectra. Respiration with succinate or ascorbate–TMPD was abolished by low KCN concentrations, suggesting the presence of a KCN-sensitive terminal oxidase. Cytochromes b and c were spectroscopically detected after reduction with physiological or artificial electron donors, whereas type a and d cytochromes were not detected. The CO difference spectrum of membranes reduced by dithionite and its photodissociation spectrum (77 K) suggested the presence of a single CO compound that had the spectral features of a cytochrome o-like pigment. High-pressure liquid chromatography analysis of membrane haems confirmed the presence of haem B; in contrast, haems A and O were not detected. Peroxidase staining of membrane type c cytochromes using SDS–PAGE revealed the presence of five bands with apparent molecular masses of 44, 33, 30, 26, and 14 kDa. Based on our results, a tentative scheme of the respiratory chain in E. corrodens, comprising (i) dehydrogenases for succinate, NADH, and formate, (ii) a ubiquinone, (iii) a cytochrome bc1, and (iv) a type-cbb' cytochrome c oxidase, is proposed. Key words: Eikenella corrodens, respiratory chain, bc1complex, oxidase cbb'.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3