Metal ion – biomolecule interactions. Part 16. C(2)-H isotopic exchange in Co(III)-coordinated imidazoles

Author:

Buncel Erwin,Yang Fan,Moir Robert Y.,Onyido Ikenna

Abstract

Transition-metal-bound imidazoles are suitable models for evaluating the roles of metal ions in biomolecules having the imidazole moiety and similar heterocyclic residues as part of their structure. Such studies provide useful insights into metal–biomolecule interactions in biological systems, especially when the lability of the metal–ligand bond is substantially reduced, such that the identity of the metal–ligand complex is preserved during the course of the reaction under investigation. The present paper reports on a kinetic study of tritium exchange from the C(2) position of the imidazole moiety in the substitution-inert complex cations [Co(NH3)5[2-3H]-imidazole]3+ (1) and [Co(NH3)5-1-methyl-[2-3H]-imidazole]3+ (2). Rate–pH profiles have been determined in aqueous solution at 60 °C. Both substrates are believed to react through rate-determining attack of hydroxide ion (kM+ pathway) at C(2)-T. Dissection of the kinetic data reveals an additional pathway for 1 consequent upon deprotonation of its pyrrole-like N-H(T) to yield 3, which is then attacked by hydroxide at C(2) (kM pathway). The ratio kM+/kM = 103 that is obtained is in accord with the expected reduced reactivity of 3. Comparison of the present data with those reported for a variety of heterocyclic substrates shows that the order of reactivity, protonated [Formula: see text] metal ion coordinated [Formula: see text] neutral form of substrates, prevails. The superiority of the proton over metal ions in catalyzing isotopic hydrogen exchange is attributed to its larger ground state acidifying effect coupled with the greater transition state stabilization it affords, relative to metal ions. The exchange reaction of 3 via the kM pathway is the first example of a reactive anionic species in which the negative charge is located α to the exchanging C-H. Keywords: tritium exchange, cobalt (III)-coordinated imidazoles.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3