Metal ion – biomolecule interactions. Part 14. Methylmercury and hydrogen ion catalysis of C(2)-H isotopic exchange in 1-methylhistidine

Author:

Buncel Erwin,Joly Helen A.,Yee Diane C.

Abstract

The rate constants for detritiation from the C(2) position of 1-methyl[2-3H]histidine have been determined in a series of aqueous buffers at 85 °C. The resulting sigmoidal rate–pH profile was indicative of a mechanism involving hydroxide ion attack on the N(3)-protonated (4) and the amino-protonated (5) forms of 1-methylhistidine, and dissection of the kinetic data allowed the extraction of the second-order rate constants for the two pathways, k and k. The unusually large value of k for a species not protonated at N(3) of the imidazole ring suggested the involvement of a kinetically equivalent zwitterionic form of the substrate (7). Comparison of the rate constant k with values determined previously for closely related substrates, such as histidine, 1-methylimidazole, and imidazole, led to the use of FMO theory to explain the effect of the various structural changes, e.g., the effect of methylation and a positively charged side chain on k and k. The addition of MeHgNO3 resulted in a decrease in the pseudo-first-order rate constant for detritiation. The rate retardation was discussed in terms of two mechanisms (Schemes 2 and 3). Analysis of the data in terms of the various metal-ion-coordinated species present under the experimental conditions showed that the reactivity of the protonated substrate greatly exceeds that of the metal-coordinated species. The difference in the catalytic ability of H+ vs. MeHg+ is discussed in terms of the extent of positive charge developed on the ligating heteroatom in the ylide (carbenoid) reaction intermediate. Keywords: methylmercury, 1-methylhistidine, isotopic exchange, proton transfer, metal ion catalysis.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3