Metal ion catalysis in nucleophilic displacement reactions at carbon, phosphorus, and sulfur centers. II. Metal ion catalysis in the reaction of p-nitrophenyl diphenylphosphinate with alkali metal phenoxides in ethanol

Author:

Dunn Edward J.,Moir Robert Y.,Buncel Erwin,Purdon J. Garfield,Bannard Robert A. B.

Abstract

The reactions of p-nitrophenyl diphenylphosphinate (1) with lithium, sodium, potassium, and benzyltrimethylammonium phenoxides (BTMAOPh) have been studied by spectrophotometric techniques in anhydrous ethanol at 25 °C. The reactivity (kobs) of the alkali metal phenoxides increases in the order BTMAOPh < KOPh < NaOPh < LiOPh. The rate of reaction of 1 with LiOPh is enhanced when lithium salts (LiSCN, LiNO3, LiClO4, LiOAc) are added to the reaction media. The addition of the alkali metal complexing agents dicyclohexyl-18-crown-6 ether or [2.2.2]cryptand for Na+, and [2.1.1]cryptand for Li+, to each of the alkali metal phenoxide reactions resulted in a decrease in rate, indicating catalysis by the alkali metal ions. The kinetic data are analyzed to obtain specific rate coefficients of reactions of phenoxide and ethoxide as the dissociated ions and as alkali metal – phenoxide ion pairs. Reactivities follow the order [Formula: see text]; [Formula: see text]; [Formula: see text]; [Formula: see text]. A mechanism is proposed in which the ion-paired metal phenoxide is more reactive towards the substrate than is the dissociated phenoxide. Analysis of the data in terms of initial state and transition state interactions with metal ions indicates that the increased reactivity of the ion-paired species results from greater stabilization of the negatively charged transition state relative to stabilization of the ion-paired nucleophile. Keywords: nucleophilic displacement at phosphorus by phenoxide, alkali-metal-ion catalysis.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3