3D-printed torsional mechanism demonstrating fundamentals of free vibrations

Author:

Tekes Ayse11

Affiliation:

1. Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.

Abstract

Commercially available turn-key systems are expensive and require substantial lab space, making it harder to accommodate many in vibrations laboratories. This study presents a low-cost, compact, and portable torsional mechanism incorporating multiple rotating disks and a long thin rod supported vertically with bearings and fixed supports at the top and bottom ends to study the modeling of systems using experimental data. The mechanism consisting of a rod, disks, bearing, and disk supports, and the base is built by 3D printing using thermoplastic PETG. The long, thin rod in this mechanism serves as a torsional spring. The equivalent stiffnesses of the 2 DOF system can be changed by adjusting the vertical position of the disks with respect to the ends, thereby shortening or lengthening the effective twist length of the thin rod. The overall dimensions of the mechanism are 6 inches in height, 5 inches in width, and 2 inches in depth, and the expected cost including the experimental setup is around USD$30 if an Arduino is used for data acquisition and $170 if equipped with a National Instruments external data acquisition card. Learning objectives of the lab course utilizing the proposed mechanism are identified. The free response data are collected for a single degree-of-freedom system using an external data acquisition card and potentiometer and unknown parameters of the system are determined by system identification. Mechanism unknown parameters are calculated using system identification and a theoretical model is compared with the experimental data.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Reference12 articles.

1. M.A. Wahab. Dynamics and vibration: an introduction. John Wiley & Sons, Inc., Hoboken, NJ. 2008.

2. Hands-On Remote Labs: Collaborative Web Laboratories as a Case Study for IT Engineering Classes

3. J.E. Corter, J.V. Nickerson, S.K. Esche, and C. Chassapis. In 34th Annual Frontiers in Education (FIE2004). Savannah, GA. 20-23 Oct. 2004. IEEE. 2004. 10.1109/FIE.2004.1408586.

4. The influence of spring length on the physical parameters of simple harmonic motion

5. Oscillations of a quadratically damped pendulum

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3