Fluid dynamics around three cylinders in presence of small control cylinders

Author:

Ahmed Ali1,Islam Shams-ul1,Zhou Chao Ying2,Manzoor Raheela3

Affiliation:

1. Department of Mathematics, COMSATS University Islamabad, Park road, Tarlai Kalan, Islamabad 45550, Pakistan.

2. Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen University Town, Shenzhen 518055, China.

3. Sardar Bahadur Khan Women’s University, Mathematics Department, Quetta Baluchistan, Pakistan.

Abstract

A numerical study is performed to analyze the effect of small control cylinders on fluid force reduction and vortex shedding suppression on the flow past three inline square cylinders using the lattice Boltzmann method. The Reynolds number Re = 160 is fixed while the spacing between the cylinders is taken in the range of 1.0D ≤ g* ≤ 5.0D (where D is the size of the main cylinder) and the control cylinder size is varied from 0.1D to 0.5D. To systematically understand the effect of control cylinders on the forces, a detailed analysis of Strouhal number (St), mean drag coefficient (CDmean), and root mean square values of the drag and lift coefficients is presented in this paper. In this study, it is observed that the average mean drag coefficient (CDmeanaverage) and Strouhal number reached either maximum or minimum values at different values of separation ratio (g*) and small control cylinder size (d). It is found that at (g*, d) = (5.0, 0.0) and (1.0, 0.5), the average CDmean attains its maximum (CDmeanaverage = 0.7813) and minimum (CDmean = 0.0988) values. Furthermore, at (g*, d) = (5.0, 0.3) and (2.0, 0.0) the average St attains its maximum (St = 0.1780) and minimum (St = 0.041) values. It is found that the flow regimes completely change in the presence of control cylinders. In particular, at g* = 4.0 there is a critical flow regime when the size of the control cylinder changes from 0.1 to 0.5. The sudden jump in the mean drag coefficient and Strouhal number for the middle cylinder with their maximum and minimum values also confirms the critical flow regime. The effect of control cylinders within tandem square cylinders has not been studied before.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3