Regulation of L-type inward calcium channel activity by captopril and angiotensin II via the phosphatidyl inositol 3-kinase pathway in cardiomyocytes from volume-overload hypertrophied rat hearts

Author:

Alvin Zikiar12,Laurence Graham G.12,Coleman Bernell R12,Zhao Aiqiu12,Hajj-Moussa Majd12,Haddad Georges E.12

Affiliation:

1. Department of Physiology and Biophysics, College of Medicine, Howard University, 520 W Street, WA 20059, USA.

2. Université St-Esprit de Kaslik, Medical School, Kaslik St, Jounieh, Lebanon.

Abstract

Heart failure can be caused by pro-hypertrophic humoral factors such as angiotensin II (Ang II), which regulates protein kinase activities. The intermingled responses of these kinases lead to the early compensated cardiac hypertrophy, but later to the uncompensated phase of heart failure. We have shown that although beneficial, cardiac hypertrophy is associated with modifications in ion channels that are mainly mediated through mitogen-activated protein (MAP) kinase and phosphatidylinositol 3-kinase (PI3K) activation. This study evaluates the control of L-type Ca2+current (ICa,L) by the Ang II/PI3K pathway in hypertrophied ventricular myocytes from volume-overload rats using the perforated patch-clamp technique. To assess activation of the ICa,Lin cardiomyocytes, voltages of 350 ms in 10 mV increments from a holding potential of –85 mV were applied to cardiocytes, with a pre-pulse to –45 mV for 300 ms. Volume overload-induced hypertrophy reduces ICa,L, whereas addition of Ang II alleviates the hypertrophic-induced decrease in a PI3K-dependent manner. Acute administration of Ang II (10−6 mol/L) to normal adult cardiomyocytes had no effect; however, captopril reduced their basal ICa,L. In parallel, captopril regressed the hypertrophy and inverted the Ang II effect on ICa,Lseemingly through a PI3K upstream effector. Thus, it seems that regression of cardiac hypertrophy by captopril improved ICa,Lpartly through PI3K.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3