Angiotensin II increases spontaneous contractile frequency and stimulates calcium current in cultured neonatal rat heart myocytes: insights into the underlying biochemical mechanisms.

Author:

Allen I S1,Cohen N M1,Dhallan R S1,Gaa S T1,Lederer W J1,Rogers T B1

Affiliation:

1. Department of Biological Chemistry, University of Maryland School of Medicine, Baltimore 21201.

Abstract

The effect of angiotensin II on cultured neonatal rat heart myocytes was studied by measuring changes in cell length, the magnitude and kinetics of the calcium current, and changes in cyclic adenosine 3',5'-monophosphate (cAMP) and phosphoinositide metabolism. Spontaneous beating frequency of multicellular networks was increased by angiotensin II with a maximal increase of 100% above control values at concentrations of 5 nM or greater. The half-maximal response occurred at 0.6 nM angiotensin II. Shortening amplitude, shortening velocity, and relaxation velocity decreased concomitantly with the increasing contractile rate. In voltage-clamped single myocytes, both steady-state and transient components of the calcium current were increased by the addition of angiotensin II. Angiotensin II had no effect on either control or isoproterenol-stimulated adenylate cyclase activity in myocyte membranes. Neither the basal levels nor the isoproterenol-stimulated cAMP accumulation in intact cells was affected by addition of hormone. In myocytes labeled with [3H]inositol, angiotensin II stimulated the formation of [3H]inositol phosphates. One minute after addition of 5 nM angiotensin II, inositol monophosphate and inositol bisphosphate levels were increased to 73% and 99%, respectively, above control values and remained elevated at 10 minutes. Inositol trisphosphate levels were not significantly different from control values at either time point. Nifedipine (10 microM) had no effect on angiotensin II-induced increases in [3H]inositol phosphates. We conclude that the increases in both spontaneous beating rate and calcium current in angiotensin II-stimulated cultured neonatal heart cells are not dependent on cAMP or inositol trisphosphate levels but may involve sustained phosphoinositide hydrolysis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference50 articles.

1. Peach MI: Renin-angiotensin system: Biochemistry and mechanism of action. Physiol Rev 1977-7:313-370

2. Capponi AM Aguilera G Fakunding JL Catt KJ: Angiotensin II: Receptors and mechanisms of action in Soffer RL (ed): Biochemical Regulation of Blood Pressure. New York John Wiley & Sons Inc 1981 pp 205-260

3. Action of Angiotensin and Analogues on the Heart

4. Mechanism for the positive inotropic effect of angiotensin II on isolated cardiac muscle;Freer RS;Ore Res,1976

5. Effects of angiotensin II on membrane current in cardiac Purkinje fibers

Cited by 219 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3