Methods for estimating aboveground biomass and its components for Douglas-fir and lodgepole pine trees

Author:

Poudel K.P.11,Temesgen H.11

Affiliation:

1. Oregon State University, Department of Forest Engineering, Resources and Management, 204 Peavy Hall, Corvallis, OR 97331, USA.

Abstract

Estimating aboveground biomass and its components requires sound statistical formulation and evaluation. Using data collected from 55 destructively sampled trees in different parts of Oregon, we evaluated the performance of three groups of methods to estimate total aboveground biomass and (or) its components based on the bias and root mean squared error (RMSE) that they produced. The first group of methods used an analytical approach to estimate total and component biomass using existing equations and produced biased estimates for our dataset. The second group of methods used a system of equations fitted with seemingly unrelated regression (SUR) and were superior to the first group of methods in terms of bias and RMSE. The third group of methods predicted the proportion of biomass in each component using beta regression, Dirichlet regression, and multinomial log-linear regression. The predicted proportions were then applied to the total aboveground biomass to obtain the amount of biomass in each component. The multinomial log-linear regression approach consistently produced smaller RMSEs compared with both SUR methods. The beta and Dirichlet regressions were superior to both SUR methods except for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) branch biomass, for which the simple SUR method produced smaller RMSE compared with the beta and Dirichlet regressions.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3