Tree Biomass Modeling Based on the Exploration of Regression and Artificial Neural Networks Approaches

Author:

Kalkanlı Genç Şerife1ORCID,Diamantopoulou Maria J.2,Özçelik Ramazan3ORCID

Affiliation:

1. Graduate Education Institute, Isparta University of Applied Sciences, East Campus, 32260 Isparta, Türkiye

2. Faculty of Agriculture, Forestry and Natural Environment, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

3. Faculty of Forestry, Isparta University of Applied Sciences, East Campus, 32260 Isparta, Türkiye

Abstract

Understanding the dynamics of tree biomass is a significant factor in forest ecosystems, and accurate quantitative knowledge of its development provides support for the optimization of forest management. This work aimed to employ innovative practices in tree biomass modeling, artificial neural network approaches along with the least-squares regression methodology, in order to construct reliable and accurate estimation and prediction models that contribute to solving the emerging problems in the field of sustainable forest management. Based on this aim, different modeling strategies were developed and explored. The nonlinear seemingly unrelated regression (NSUR) methodology, the generalized regression (GRNN), the resilient propagation (RPNN) and the Bayesian regularization (BRNN) artificial neural network algorithms were utilized for the construction of reliable biomass models to attain the most accurate and reliable tree biomass components and total tree biomass estimations. The work showed that GRNN models provided a significantly better performance compared with the other modeling methodologies tested. Considering the non-parametric nature of the GRNN neural network algorithm, the fact that it was designed for nonlinear regression-type problems capable of dealing with small datasets, this modeling approach warrants consideration as an effective alternative to nonlinear regression or to other neural network approaches to the field of tree biomass modeling.

Funder

The Scientific Research Projects Coordination Unit of the Isparta University of Applied Sciences

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3