The interactive effect of competition and climate on growth of boreal tree species in western Canada and Alaska

Author:

Oboite Felix O.11,Comeau Philip G.11

Affiliation:

1. Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, AB T6G 2H1, Canada.

Abstract

Understanding interactions between competition and climate in relation to their effects on individual tree growth is crucial to the development of climate-sensitive growth models required for modelling boreal forest succession in a changing climate. We used data from permanent growth and yield sample plots in western Canada and Alaska to investigate the impact of competition within a regional gradient of climatic conditions for lodgepole pine (Pinus contorta Douglas ex Loudon), jack pine (Pinus banksiana Lamb.), trembling aspen (Populus tremuloides Michx.), balsam poplar (Populus balsamifera L.), white spruce (Picea glauca (Moench) Voss), and black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.). We characterized the effects of competition (basal area of spruce–fir, deciduous, and pine trees larger than the focal tree) and climate (mean annual temperature and precipitation) and their interactions on basal area growth of individual trees using linear mixed-effects models. Our results indicated that intraspecific competition had stronger effects on growth than interspecific competition and climate. Moreover, significant interactions between intraspecific competition and climate suggest that an increase in intraspecific competition will lead to a reduction in tree growth for warmer regions (lodgepole pine, trembling aspen, balsam poplar, and white spruce) and wetter regions (jack pine). The manner in which interspecific competition altered tree growth responses to climate was variable, depending on tree species and competition type. These results indicate that the relationships between growth and climate may differ according to the degree of competition and the structure of the stand.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Reference73 articles.

1. Topography alters tree growth–climate relationships in a semi-arid forested catchment

2. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress

3. Brouillet, L., and Whetstone, R.D. 1993. Climate and physiography. In Flora of North America north of Mexico. Vol. 1. Edited by Flora of North America Editorial Committee. Oxford University Press, New York. pp. 15–46.

4. Greater future global warming inferred from Earth’s recent energy budget

5. Multimodel Inference

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3