Long-term impact of fire on high-altitude balsam fir (Abies balsamea) forests in south-central Quebec deduced from soil charcoal

Author:

Couillard Pierre-Luc1,Payette Serge1,Grondin Pierre2

Affiliation:

1. NSERC Northern Research Chair, Département de Biologie, Centre d'études nordiques, Université Laval, 1045 Av. de la Médecine, Québec City, QC G1V 0A6, Canada.

2. MRN Ministère des Ressources naturelles, DRF Direction de la recherche forestière, Québec, QC G1P 3W8, Canada.

Abstract

Extensive balsam fir (Abies balsamea (L.) Mill.) stands across the southern boreal forest are ecosystems likely more influenced by insect outbreaks and windthrows than by fire. To what degree the dominance of balsam fir stands reflects past and present disturbance dynamics associated with fire is not well documented. To answer this question, we focused on the reconstruction of the long-term fire history of high-altitude balsam fir forests of southern Quebec. The reconstruction was based on botanically identified and radiocarbon-dated soil charcoal particles in 19 sites covering successional stages from white birch (Betula payrifera Marsh.) to mixed white birch – balsam fir stands. Fire activity commenced early after deglaciation, about 9600 calibrated years before present when the first boreal tree species were established. Fire occurred recurrently during the following 5000 years with a forest landscape composed of the principal tree species common to the boreal forest, including jack pine (Pinus banksiana Lamb.). Fire activity ceased more or less abruptly about 4500 years ago due to less fire-conducive, more humid conditions. Then, the forest landscape progressively changed towards a larger representation of white birch – balsam fir forests and the disappearance of jack pine. Whereas several balsam fir stands have not burned over the last 4500 years, scattered fires occurred in particular over the last 250 years when 1815 and 1878 fires, probably man-made, burned 50% of the forest, thus causing a major change in the composition of the forest landscape. It is concluded that the high-altitude forest landscape of southern Quebec changed profoundly over the Holocene in close association with a time-transgressive dry-to-wet climatic gradient.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3