Are forest management practices to improve carbon balance compatible with maintaining bird diversity under climate change? A case study in Eastern North America

Author:

Labadie GuillemetteORCID,Cadieux PhilippeORCID,Moreau LucasORCID,Bognounou FideleORCID,Thiffault Evelyne,Cyr Dominic,Boulanger Yan,Stralberg DianaORCID,Grondin Pierre,Tremblay Junior A.ORCID

Abstract

The combination of climate change and anthropogenic disturbance significantly impacts forest bird assemblages. Assessing the cumulative effects of forest management and climate change on biodiversity and ecosystem services, including carbon sequestration and storage and provisioning of wood products is key to informing forest management and conservation decision making. Specifically, we projected changes in forest composition and structure according to various forest management strategies under a changing climate using LANDIS-II for two case study areas of Quebec (Canada): a hemiboreal (Hereford Forest) and a boreal (Montmorency Forest) area. Then, we assessed projected bird assemblage changes, as well as sensitive and at-risk species. As part of an integrated assessment, we evaluated the best possible management measures aimed at preserving avian diversity and compared them with optimal options for mitigation of carbon emissions to the atmosphere. Forest management and climate change were projected to lead to significant changes in bird assemblages in both types of forest through changes in forest composition. We projected an increase in deciduous vegetation which favored species associated with mixed and deciduous stands to the detriment of species associated with older, coniferous forests. Changes were more pronounced in Hereford Forest than Montmorency Forest. In addition, Hereford’s bird assemblages were mainly affected by climate change, while those in Montmorency Forest were more impacted by forest management. We estimated that 25% of Hereford and 6% of Montmorency species will be sensitive to climate change, with projected abundance changes (positive or negative) exceeding 25%. According to the simulations, a decrease in the level of forest harvesting could benefit bird conservation and contribute to reduction of carbon emissions in the boreal forest area. Conversely, the hemiboreal forest area require trade-offs, as mitigation of carbon emissions is favored by more intensive forest management that stimulates the growth and carbon sequestration of otherwise stagnant stands.

Funder

Ministère des Forêts, de la Faune et des Parcs

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3