Spatial and genetic structure of the lodgepole × jack pine hybrid zone

Author:

Burns Ian1,James Patrick M.A.2,Coltman David W.1,Cullingham Catherine I.1

Affiliation:

1. Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.

2. Département de sciences biologiques, Université du Montréal, Montréal, QC H3C 3J7, Canada.

Abstract

In north-central Alberta, lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia) and jack pine (Pinus banksiana Lamb.) form a mosaic hybrid zone, the spatial extent of which remains poorly defined. We sought to refine the genetic and geographic distribution of this hybrid zone in western North America to provide information important in predicting future risk of mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks. We used 29 single nucleotide polymorphism (SNP) markers to discriminate lodgepole pine, jack pine, and their hybrids. We compared and contrasted spatial patterns of hybridization in northern and southern forest zones based on the colonization history of the two species. We found that patterns of introgression were more similar between the zones than expected by chance, but there were significant differences between these regions at specific loci. Using logistic regression, we created a robust predictive model to distinguish among lodgepole pine, jack pine, and their hybrids using a combination of geographic and environmental predictors. Using model selection based on Akaike information criterion, we found that location, elevation, and moisture are important predictors for species class. Quantification of the genetic differences between these two regions, combined with an accurate model for predicting the spatial distribution of lodgepole pine, jack pine, and their hybrids, provides essential information for continued effective management of forest resources.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3