Coupling mountain pine beetle and forest population dynamics predicts transient outbreaks that are likely to increase in number with climate change

Author:

Brush MicahORCID,Lewis Mark A.

Abstract

AbstractMountain pine beetle (MPB) in Canada have spread well beyond their historical range. Accurate modelling of the long-term dynamics of MPB is critical for assessing the risk of further expansion and informing management strategies, particularly in the context of climate change and variable forest resilience. Most previous models have focused on capturing a single outbreak without tree replacement. While these models are useful for understanding MPB biology and outbreak dynamics, they cannot accurately model long-term forest dynamics. Past models that incorporate forest growth tend to simplify beetle dynamics. We present a new model that couples forest growth to MPB population dynamics and accurately captures key aspects of MPB biology, including a threshold for the number of beetles needed to overcome tree defenses and beetle aggregation that facilitates mass attacks. These mechanisms lead to a demographic Allee effect, which is known to be important in beetle population dynamics. We show that as forest resilience decreases, a fold bifurcation emerges and there is a stable fixed point with a non-zero MPB population. We derive conditions for the existence of this equilibrium. We then simulate biologically relevant scenarios and show that the beetle population approaches this equilibrium with transient boom and bust cycles with period related to the time of forest recovery. As forest resilience decreases, the Allee threshold also decreases. Thus, if host resilience decreases under climate change, for example under increased stress from drought, then the lower Allee threshold makes transient outbreaks more likely to occur in the future.Statements and DeclarationsCompeting interestsThe authors declare no competing interests.Data availability statementData sharing is not applicable to this article as no datasets were generated or analysed during the current study. Code to produce the figures is available atgithub.com/micbru/MPBModel/.

Publisher

Cold Spring Harbor Laboratory

Reference43 articles.

1. Alfaro RI , Campbell E , Hawkes BC (2010) Historical frequency, intensity and extent of mountain pine beetle disturbance in British Columbia (Vol. 2009-30). Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre

2. Mountain Pine Beetle Brood Production in Relation to Thickness of Lodgepole Pine Phloem1

3. Bottom-up derivation of discrete-time population models with the Allee effect

4. Influence of fire and mountain pine beetle on the dynamics of lodgepole pine stands in British Columbia, Canada

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3