Affiliation:
1. Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, P.R. China.
Abstract
Several miRNAs have been recently suggested as potential therapeutic targets for anesthesia-related diseases. This study was carried out to explore the biological roles of miR-24 in isoflurane-treated rat hippocampal neurons. Isoflurane was used to induce neurotoxicity in a rat model. Gain- and loss-of-function of miR-24 was performed, and the size and Ca2+ permeability of mitochondria, as well as cell proliferation and apoptosis, and levels of oxidative-stress-related factors were measured both in vivo and in vitro. Dual luciferase reporter gene assays were used to identify the target relationship between miR-24 and p27kip1. In this study, isoflurane treatment decreased miR-24 expression, after which, levels of neuron apoptosis and oxidative-stress-related factors were elevated and neuron viability was reduced. Over-expression of miR-24 inhibited oxidative damage and neuronal apoptosis in hippocampal tissues, and suppressed the size and Ca2+ permeability of mitochondria of hippocampal neurons. miR-24 enhanced the viability of rat hippocampal neurons by targeting p27kip1. To conclude, this study demonstrated that miR-24 attenuates isoflurane-induced neurotoxicity in rat hippocampus via its antioxidative properties and inhibiting p27kip1 expression.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献