A Kinetic Study of High Pressure Aqueous Oxidations of Organic Compounds Using Elemental Oxygen

Author:

Taylor Jay E.,Weygandt John C.

Abstract

The high pressure (< 136 atm) and high temperature (< 250°) reactions of elemental oxygen with aqueous solutions of selected soluble alcohols, ketones, and acids have been examined in detail for the first time. Saturated acids and methyl alcohol are not oxidized under the imposed conditions. The end product for the oxidation of ketones and primary alcohols is mainly carbon dioxide at 200 °C; however, appreciable yields of acids are obtained at 250 °C. tert-Butyl alcohol and secondary alcohols form the corresponding ketones which are then further oxidized. Those alcohols and ketones which were studied quantitatively all exhibited second-order kinetics, first order in organic compound and first order in oxygen. The compounds are listed below in the order of decreasing rate at 200°, ΔH in kcal/mol and ΔS in entropy units are noted in parentheses: 2-butanone (16.0, −25) > tert-butyl alcohol (24.2, −9) > cyclopentanone (12.4, −36) > isobutyl alcohol (21.5, −17) > sec-butyl alcohol (23.9, −15) > n-butyl alcohol > (21.3, −22) > acetone (15.1, −37). The alcohols have both higher entropies and enthalpies of activation than the ketones. Two non-chain mechanisms are proposed. (I) A ketone equilibrates with its enol which oxidizes to a metastable oxygenated intermediate. At 250° the intermediate decomposes to an acid or at 200° it is further oxidized to carbon dioxide. (II) Alcohols oxidize by an initial bimolecular mechanism to the corresponding ketone or aldehyde which may then be oxidized further.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kinetic Model for Recovering Acetic Acid from Hydrothermal Liquefaction Aqueous Byproducts of Biomass Wastes;Industrial & Engineering Chemistry Research;2023-10-16

2. Organic Oxidations Using Geomimicry;The Journal of Organic Chemistry;2015-11-25

3. Sequential supercritical water gasification and partial oxidation of hog manure;International Journal of Hydrogen Energy;2010-11

4. Wet Air Oxidation of Meat-and-Bone Meal and Raw Animal Byproducts;Industrial & Engineering Chemistry Research;2008-03-29

5. Evaluation of Wet Oxidation Pretreatment for Enzymatic Hydrolysis of Softwood;Applied Biochemistry and Biotechnology;2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3