Correction Functions for Soil-Water Characteristics Curves Extending the Principles of Thermodynamics

Author:

Li Yao1,Vanapalli Sai2

Affiliation:

1. University of Ottawa, 6363, Civil Engineering, Ottawa, Ontario, Canada;

2. University of Ottawa, 6363, Department of Civil Engineering, Ottawa, Canada;

Abstract

The soil-water characteristics curve (SWCC) that is typically measured from laboratory tests is fit using mathematical models that are based on capillary law and used along with the saturated soil properties for predicting the hydro-mechanical behavior of unsaturated soils. Such SWCC models are valid for coarse-grained soils. However, the same models are also extended for modeling the SWCC of fine-grained soils over suction range from 0 to 106 kPa with a correction function. Due to this reason, SWCC models with correction functions have limitations in rigorous analyses of complex thermo-hydro-mechanical-chemo (THMC) behaviors of unsaturated soils, especially in the high suction range. In the present study, correction function is proposed for modeling the SWCC behavior using two widely models based on a theoretical framework extending the principles of thermodynamics. The relationships between the traditional and the proposed correction functions are discussed. Finally, comparisons are provided between the proposed and the traditional correction functions on the SWCC behavior to highlight their differences. In addition, the effects of temperature and salinity on the SWCC with correction functions are also summarized. The proposed correction function is a valuable tool for rigorous analyses and reliable prediction of the complex THMC behaviors of unsaturated soils.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3