Affiliation:
1. Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
2. School of Civil and Environmental Engineering, Federal University of Goias (UFG), Goiânia 74690-900, GO, Brazil
Abstract
The soil–water characteristic curve (SWCC) is widely used as a tool in geotechnical, geo-environmental, hydrology, and soil science fields for predicting and interpreting hydro-mechanical behaviors of unsaturated soils. Several previous studies focused on investigating the influence of initial water content, stress history, temperature, and salt content on the SWCC behavior. However, there is still limited understanding to be gained from the literature on how we can systematically incorporate the influence of complex thermo-hydro-mechanical-chemo (THMC) effects into interpreting and predicting the behavior of unsaturated soils. To address that knowledge gap, in this study, the coupled influence of temperature, initial stress state, initial density, soil structure, and chemical solution effects was modeled using established SWCC equations from the literature. The methodology for incorporating the coupled effects of these influential factors is presented herein. Furthermore, we evaluated the SWCC models proposed in this study, enabling us to provide a comprehensive discussion of their strengths and limitations, using the published SWCC data from the literature. The developments outlined in this paper contribute toward facilitating a rigorous approach for analyzing the THMC behaviors of unsaturated soils.
Funder
China Scholarship Council
University of Ottawa, Canada
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil
Natural Science and Engineering Research Council of Canada