What visual information is used for navigation around obstacles in a cluttered environment?

Author:

Patla Aftab E,Tomescu Sebastian S,Ishac Milad G.A

Abstract

The goal of this study was to determine what visual information is used to navigate around barriers in a cluttered terrain. Twelve traffic pylons were arranged randomly in a 4.55 × 3.15 m travel area: there were 20 different arrangements. For each arrangement, individuals (N = 6) were positioned in 1 of 3 locations on the outside border with their eyes closed: on verbal command they were instructed to open their eyes and quickly go to 1 of 2 specified goals (2 vertical posts defining a door) located on one edge of the travel area. The movement of the body was tracked using the OPTOTRAK system, with the IREDS placed on a collar worn by the subjects. Experimental data of travel path chosen were compared with those predicted by models that incorporated different types of visual information to control path trajectory. The 6 models basically use 2 different strategies for route selection: reactive control based on visual input about the obstacle encountered in the line-of-sight travel path (Model # 1) and path planning based on different visual information (Model # 2, 3, 4, 5, and 6). The models that involve path planning are grouped into 2 categories: models 2, 3, 4, and 5 need detailed geometrical configuration of the obstacles to plan a route while model 6 plans a route based on identifying and avoiding a cluster of obstacles in the travel path. Two measures were used to compare model performance with the actual travel path: the difference in area between predicted and actual travel path and the number of trials that accurately predicted the number of turns during travel. The results suggest that route selection is not based on reactive control, but does involve path planning. The model that best predicts the travel paths taken by the individuals uses visual information about cluster of obstacles and identification of safe corridors to plan a route.Key words: navigation, obstacle avoidance, vision, path planning.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3