Target Constraints Influence Locomotion Pattern to the First Hurdle

Author:

Smirniotou Athanasia1,Panteli Flora1,Theodorou Apostolos1

Affiliation:

1. School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece

Abstract

The study examined to what extent the manipulation of hurdle height (0.76-m hurdle, low hurdle 0.50 m, and white stripe) would affect visual regulation strategies and kinematic reorganization when approaching the first hurdle. In addition, the impact of constraints as a training tool in terms of creating movement patterns functional for and representative of competitive movement models was assessed. The approach phase to the first hurdle of 13 physical education students with no previous experience in hurdling was video recorded and analyzed. Emergence of different footfall variability curves and movement coordination patterns suggests that participants interact differently with features of the performance context. Contrary to the white stripe, the hurdle height required participants to initiate regulation and distribute adjustments over a larger number of steps, and afforded the preparation for takeoff in order to clear the hurdle. In task design, manipulation of task constraints should offer valuable information regarding the dynamics of movement.

Publisher

Human Kinetics

Subject

Physiology (medical),Neurology (clinical),Physical Therapy, Sports Therapy and Rehabilitation

Reference60 articles.

1. What exactly is acquired during skill acquisition?;Araújo, D.,2011

2. The ecological dynamics of decision making in sport;Araújo, D.,2006

3. Ecological validity, representative design, and correspondence between experimental task constraints and behavioral setting: Comment on Rogers, Kadar, and Costall (2005);Araújo, D.,2007

4. The role of ecological constraints on expertise development;Araújo, D.,2010

5. Kinematic analysis of obstacle clearance during locomotion;Austin, G.,1999

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3