Induced magnetic field influences on blood flow through an anisotropically tapered elastic artery with overlapping stenosis in an annulus

Author:

Mekheimer Kh. S.123,Haroun Mohammed H.123,El Kot M. A.123

Affiliation:

1. Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr city 11884, Cairo, Egypt.

2. Department of Mathematics, Faculty of Education, Ain Shams University, Cairo, Egypt.

3. Department of Mathematics, Faculty of Science, Suez Canal University, Suez, Egypt.

Abstract

A mathematical model for blood flow through an elastic artery with overlapping stenosis under the effect of induced magnetic field is presented. The present theoretical model may be considered as a mathematical representation to the movement of conductive physiological fluid through coaxial tubes such that the inner tube is uniform and rigid, representing a catheter tube, while the outer tube is an anisotropically tapered elastic cylindrical tube filled with a viscous incompressible electrically conducting fluid, representing blood. The analysis is carried out for an artery with mild local narrowing in its lumen, forming a stenosis. Analytical expressions for the stream function, the magnetic force function, the axial velocity, the axial induced magnetic field, and the distribution of the current density are obtained. The results for the resistance impedance, the wall shear stress distribution, the axial velocity, the axial induced magnetic field, and distribution of the current density have been computed numerically, and the results were studied for various values of the physical parameters, such as the the Hartmann number Ha, the magnetic Reynolds number Rm, the taper angle ϕ, the maximum height of stenosis δ, the degree of anisotropy of the vessel wall n, and the contributions of the elastic constraints to the total tethering K.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3