THE ANALYSIS OF THE FLOW OF BLOOD IN A STENOSED ARTERY THROUGH SIMULATION: A COMPARISON AMONG VARIOUS NON-NEWTONIAN MODELS

Author:

NARAYAN S. SHANKAR1ORCID,BHATTACHARJEE ANURADHA2,SAHA SUNANDA3,PUNEETH VENKATESH4,SINGHAL ABHINAV4,SAYFUTDINOVNA ABDULLAEVA BARNO5

Affiliation:

1. Department of Mathematics and Statistics, Ramaiah University of Applied Sciences, Bengaluru 560058, India

2. Department of Mathematics, Dayananda Sagar University, Bengaluru 560068, India

3. Department of Mathematics, Vellore Institute of Technology, Vellore 632014, India

4. Department of Computational Science, CHRIST (Deemed to be University), Ghaziabad 201003, India

5. Doctor of Pedagogical Sciences, Vice-Rector for Scientific Affairs, Tashkent State Pedagogical University, Tashkent, Uzbekistan

Abstract

This paper focuses on the dual quality of blood, Newtonian and non-Newtonian, in particular by exploring the energy curves. Careful investigation of the dual property of blood has been made by considering two different geometries to represent a stenosed arterial segment. We present a cautious assessment of non-Newtonian blood rheology impacts in arterial stream simulations by coupling the Newtonian and non-Newtonian models. The flow of energy through the two flow dimensions is meticulously investigated using velocity (kinetic energy), pressure, and wall shear stress (pressure energy). Besides, the proper implementation of an interface boundary condition (IBC) was emphasized to ensure consistency with the flow conditions downstream of a backward-facing step. The integration of the Newtonian and non-Newtonian models adjoins the novelty of the current research. The energy curves are obtained by implementing five different non-Newtonian models to designate a suitable non-Newtonian model for blood flow investigations. The combination of the non-Newtonian models enforced in this research is novel and particular attention is paid to the energy curves obtained. The conclusion was to elect the Carreau model as a suitable non-Newtonian rheological model for the blood flow study. This study was able to finalize the fact that the coupling of Newtonian and non-Newtonian models is necessary to obtain accurate results. For the sinusoidal waveform considered for the velocity, Carreau and the Power law models yield better results, eliminating the other non-Newtonian models from the list. With a better inlet condition imposed in the form of the Fourier series for pressure and velocity, the Carreau model yields the best results.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3