Effect of organic N source on bacterial growth, lipo-chitooligosaccharide production, and early soybean nodulation by Bradyrhizobium japonicum

Author:

Supanjani S,Lee Kyung D,Almaraz Juan J,Zhou Xiaomin,Smith Donald L

Abstract

Production of Bradyrhizobium japonicum inoculants is problematic because high inoculation rates are necessary but expensive, while production of rhizobial Nod factors (lipo-chitooligosaccharides (LCOs)), key signal molecules in the establishment of legume–rhizobia symbioses, may be inhibited at high culture cell densities. We conducted experiments to determine the effects of growth medium N source on B. japonicum growth, LCO production, and early nodulation of soybean. We found that 1.57 mmol ammonium nitrate·L–1 resulted in less rhizobial growth and rhizobial capacity to produce LCOs (on a per cell basis) than did 0.4 g yeast extract·L–1, which contained the same amount of N as the ammonium nitrate. Increasing yeast extract to 0.8 g·L–1 increased rhizobial growth and LCO production on a volume basis (per litre of culture) and did not affect cell capacity to produce LCOs; however, at 1.4 g yeast extract·L–1 per cell, production was reduced. A mixture of 0.8 g yeast extract·L–1 and 1.6 g casein hydrolysate·L–1 resulted in the greatest bacterial growth and LCO production on a volume basis but reduced LCO production per cell. Changes in organic N level and source increased production of some of the measured LCOs more than others. LCO production was positively correlated with cell density when expressed on a volume basis; however, it was negatively correlated on a per cell basis. We conclude that although quorum sensing affected Nod factor production, increased levels of organic N, and specific compositions of organic N, increased LCO production on a volume basis. Greenhouse inoculation experiments showed that the medium did not modify nodule number and N fixation in soybean, suggesting that it could have utility in inoculant production.Key words: Nod factor, casein hydrolysate, yeast extract, quorum sensing.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3