Affiliation:
1. Institut für Anorganische Chemie, Universität Würzburg, Am Hubland D-97074, Würzburg, Germany.
Abstract
. The EPR parameters of a series of dinuclear manganese(III,IV) complexes with mono(μ-oxo), bis(μ-oxo), (μ-oxo)(μ-carboxylato), bis(μ-oxo)(μ-carboxylato), and (μ-oxo)bis(μ-carboxylato) bridges were studied by broken-symmetry density functional (DFT) methods. The influence of the exchange-correlation functional on the agreement with experiment has been evaluated systematically for g tensors; 55Mn, 14N, and 1H hyperfine coupling tensors; and Heisenberg exchange couplings. 14N and 1H hyperfine couplings, 55Mn hyperfine anisotropies, g tensors, and exchange couplings are well described by hybrid functionals with moderate exact-exchange admixtures such as B3LYP. The isotropic 55Mn hyperfine couplings require larger exact-exchange admixtures. However, the errors of the B3LYP calculations are systematic and may be corrected by a constant scaling factor, providing good predictive power for a wide range of EPR parameters with broken-symmetry DFT and standard functionals. The influence of terminal and bridging ligands on structure, spin-density distributions, and EPR parameters are evaluated systematically. Computed hyperfine and g tensors are not covariant to each other. This may have consequences for spectra simulations. The nature of the broken-symmetry state and the origin of its spin contamination were analyzed by an expansion into restricted determinants, based on paired orbitals.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献